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Abstract Software-based image analysis is a crucial step in

the biological interpretation of two-dimensional gel elec-

trophoresis experiments. Recent significant advances in

image processing methods combined with powerful com-

puting hardware have enabled the routine analysis of large

experiments. We cover the process starting with the

imaging of 2-D gels, quantitation of spots, creation of

expression profiles to statistical expression analysis fol-

lowed by the presentation of results. Challenges for analysis

software as well as good practices are highlighted. We

emphasize image warping and related methods that are able

to overcome the difficulties that are due to varying

migration positions of spots between gels. Spot detection,

quantitation, normalization, and the creation of expression

profiles are described in detail. The recent development of

consensus spot patterns and complete expression profiles

enables one to take full advantage of statistical methods for

expression analysis that are well established for the analysis

of DNA microarray experiments. We close with an

overview of visualization and presentation methods (pro-

teome maps) and current challenges in the field.
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Introduction

The last decade in life sciences was deeply influenced by

the development of the “Omics” technologies (genomics,

transcriptomics, proteomics, and metabolomics), which aim

for a global view on biological systems. With these tools at

hand, the scientific community is striving to build func-

tional models to develop a global understanding of the

living cell.

The analysis of the proteome as the final level of gene

expression started out with techniques based on 2-D gel

electrophoresis (O’Farrell 1975; Klose 1975) and extended

its reach with semi-gel-free and shot gun gel-free liquid

chromatography–mass spectrometry (LC–MS)-based tech-

niques in recent years.

A comprehensive evaluation of the relative merits and

weaknesses of gel-based and gel-free methods is beyond the

scope of our review. Studies that compare the performance

on similar samples (Wolff et al. 2006, 2007) indicate that the

methods are complementary, i.e., their analytical windows

overlap, but each has an exclusive set of proteins or

modifications that were not identified with the other.

Quantitative analysis based on LC–MS techniques is still in

an early stage when considering available software and

algorithms. Here, we focus on the computerized analysis of

2-D gels which are widely used in the scientific community.

2-D gels may separate up to 10,000 protein spots on one gel

(Klose and Kobalz 1995). In a suitably equipped and

experienced lab environment, 2-D gels are easy to handle,

and they can be produced in a highly parallelized way. The

software has meanwhile reached a level that allows for

routine analysis of a large amount of samples with an

investment of time that is much smaller than the efforts

needed for the wet lab work.
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The routine application of potent and easy-to-use

software systems has been enabled by several improve-

ments in 2-D gel image acquisition and analysis technology

over the last decades (Aittokallio et al. 2005; Dowsey et al.

2003). Among these milestones, one should mention the

introduction of the first computer-based analysis systems,

still without a graphical user interface, in the late 1970s,

among them ELSIE (Bossinger et al. 1979; Vo et al. 1981),

GELLAB (Lemkin and Lipkin 1981a, b, c; Lemkin 1989),

TYCHO (Anderson et al. 1981), HERMeS (Tarroux et al.

1989; Vincens and Tarroux 1987), GESA (Rowlands et al.

1988), and LIPS (Skolnick et al. 1982). This first

generation of 2-D image analysis programs was followed

by Elsie-4 (Olson and Miller 1988), Melanie (Appel et al.

1991; based on Elsie-4), and QUEST (Garrels 1989) since

the mid-1980s. These programs used X-Windows-based

graphical user interfaces on computer workstations. In the

following years, the QUEST, TYCHO, and Melanie

programs evolved to the commercially available PDQuest,

Kepler, and Melanie III. While in the beginning such

software needed exceptionally equipped workstations, in

1989, Nonlinear (Newcastle, UK) introduced Phoretix, the

first 2-D gel analysis software running on desktop PCs.

With the dropping hardware prices, the Melanie and

PDQuest systems were also ported to PCs.

While until then none of the available systems gave

visual feedback on the quality of spot matching, Melanie

II introduced image adjustment based on a global

polynomial transformation of the image’s geometry. This

simplified the comparison of the raw images but only

incompletely addressed the problem of positional varia-

tions caused by the electrophoretical separation process.

Horgan et al. (1992) used for the first time a super-

imposing of false-colored 2-D images to simplify the

finding of differences in spot patterns. Unlü et al. (1998)

and Bernhardt et al. (1999) suggested different approaches

that use superimposed and congruent false color images

for the comparison of 2-D gels. This technology was

improved by establishing positional correction by image

warping of the raw 2-D gel images and commercialized

with the first version of the Delta2D software from

DECODON (Greifswald, Germany), coinciding with

Compugen’s Z3 software in 2000 (Smilansky 2001). Both

systems were able to completely remove distortions from

the gel images and bring the spot patterns into congruency.

See Table 1 for a list of current software.

With the ever-increasing capacity of available hardware,

more advanced image processing methods became feasible.

They use all of the available image information instead of

condensing it to spot boundaries before processing. This

simplifies image comparison and speeds up analysis

dramatically but still produces expression profiles with

gaps which significantly impede reliable gene expression

analysis. The most recent milestone introduced by us in

2003 addressed this problem: An algorithm to combine the

information of several gels into a so-called fusion gel

makes it possible to generate a proteome map that is

representative for the whole experiment (Luhn et al. 2003).

On a proteome map, one can detect all spots of a whole

experiment in a single gel image, whereas the average

images proposed earlier suffer from dilution effects for

weak and rare spots. The spots detected there can serve as a

spot consensus pattern that is valid for the whole gel set of

the experiment. The consensus spot pattern is then

transferred according to the warping transform and used

on all gels. This allows for 100% matching spots and, in

turn, complete expression profiles for reliable statistical

analysis (Voigt et al. 2006; Höper et al. 2006).

Depending on the workflow, one can put 2-D gel image

analysis software into two broad categories:

1. Spot detection first: these are the classical packages

where the image information is first condensed into a

set of spot centers, boundaries, and possibly spot

volumes for each image. Spot matching and subsequent

creation of expression profiles are done based on the

data about spot geometry and volumes.

2. Image warping first: these are packages where image

warping is applied to remove running differences

between gels, based on the whole image information.

Spot detection is a separate and independent step. The

creation of expression profiles is critically informed

(and improved) by the data about positional differences

between gels that were gained in the first step.

Historically, the “spot detection first” workflow was the

only feasible way to proceed due to the limitations of

available hardware. Software based on the second “image

warping first” workflow, including Compugen’s Z3,

Table 1 Current commercial software products for 2-D gel image

analysis

Company Products

Bio-Rad, Hercules, CA, USA, www.

biorad.com

PDQuest,

ProteomWeaver

Compugen, Tel Aviv, Israel, www.

compugen.com

Z3 (discontinued)

DECODON, Greifswald, Germany,

www.decodon.com

Delta2D

GE Healthcare, www.gelifesciences.com Decyder 2D,

ImageMaster Platinum*

Genebio, Geneva, Switzerland, www.

genebio.com

*Melanie (ImageMaster

Platinum)

Nonlinear Dynamics, Newcastle, UK,

www.nonlinear.com

Progenesis, SameSpots

Syngene, Cambridge, UK, www.

syngene.com

Dymension
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DECODON’s Delta2D, and, most recently, Nonlinear’s

SameSpots, is able to overcome many of the difficulties in

spot matching that are hard to deal with when different

migration positions add to the uncertainty of multiple

separate spot detections. With the subsequent introduction

of consensus spot patterns (in Delta2D 2003 and Same-

Spots 2006), one is able to virtually eliminate matching

problems by using consistent spot patterns throughout the

experiment. Recent comparisons between separate spot

detection and using a consensus spot pattern (Eravci et al.

2007) show that the latter approach is able to find

substantially more differentially expressed proteins, in a

much shorter time. In other words, valuable information is

lost due to spot matching problems that are inevitable when

using the classical approach. We expect other vendors to

evolve their products to use a workflow that is based on

image warping and consensus spot patterns over the

following years.

The typical workflow of a 2-D-gel-based proteomics

analysis using the “image warping first” approach and

consensus spot patterns can be described as follows

(Fig. 1):

1. Performing a biological experiment or selecting a

biological object of interest. The first sample prepara-

tion step is freezing the sample in the current state. This

includes inactivation of all cellular processes that may

change the proteome composition, preventing protease

action, disintegration of the cell material, keeping or

bringing the proteins into solution, removing or destroy-

ing macromolecules that may disturb the subsequent steps

of the 2-D protocol (RNase and/or DNase treatment and

centrifuging for cell debris removal). Alternatively or in

combination with radiolabeling, covalent fluorescent

labeling of proteins can be applied here.

Fig. 1 Analysis work flow of a 2-D-gel-based proteomics experiment

in Delta2D. 1 Sample preparation; 2 2-D gel electrophoresis; 3 2-D

gels are stained/detected and digitized; 4 spot positions are aligned

across gel images by warping; 5 a proteome map/fusion gel image is

generated by combining the images using a union fusion; 6 the union

fusion image serves as basis for constructing the consensus spot

pattern for the whole experiment; 7 the consensus spot pattern is

transferred to all images and subsequently remodeled; 8 expression

profiles are extracted and analyzed to find relevant proteins
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2. Bringing the proteins into the gel and performing the

2-D separation by combining isoelectrofocussing in the

first and sodium dodecyl sulfate (SDS) electrophoresis

in the second dimension. An alternate 2-D approach

uses the combination of two detergent treatments that

resolve the protein molecules differently resulting in a

scattered diagonal spot pattern (2D-16-BAC- or 2D-

CTAB/SDS-polyacrylamide gel electrophoresis). A

variety of staining techniques can be applied before or

after separation to enable spot detection.

3. Capturing the gel images by using scanners, charge-

coupled device (CCD) camera-based, or laser imaging

devices. Depending on the protein labeling or staining

techniques, a compatible imaging device has to be

chosen. The capturing process results in one or more

digitized computer images per gel that can be displayed

with common image analysis software. The image

capture step transforms the quantitative information of

the gel into computer-readable data.

4. Correction of positional spot variations by image

warping. 2-D electrophoresis results in spot patterns

with variations in the spot positions between gels.

Therefore, gel images are positionally corrected by a

combination of global and local image transforms

(image warping). The information about differences in

spot positions that was gained in this step is reused later

for image fusion and for the transfer of the consensus

spot pattern.

5. Image fusion and proteome maps condense the image

information of the whole experiment into one fusion

image, also called a proteome map. The proteome map

contains the information of all protein spots ever

detected in the experiment.

6. Spot detection is performed on the proteome map. As a

result, a consensus spot pattern is generated, which is

valid for all gels in the experiment. It describes the

position and the general shape of all protein spots from

the experiment.

7. For spot quantitation and building expression profiles,

the consensus spot pattern is applied to all gel images

of the experiment (Fig. 2). The image transformation

(step 4) assures that all spots of the consensus pattern

arrive at their correct position. A remodeling step

makes sure that the predetermined spot boundaries

from the consensus are adapted to the real gray levels

observed on the target image. All boundaries of the

consensus pattern can be found on every gel.

8. Expression profile analysis identifies interesting spots

which will be marked for further analysis, protein

identification, and interpretation.

Protein staining

Various techniques are available to make the separated

spots detectable (Fig. 3). A direct method that suggests

Fig. 2 Consensus spot pattern applied to four gel images (a–d), before remodeling of spot shapes. The consensus spot pattern is generated by spot

detection on the synthetic fusion image (e) which was computed from the original images
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itself is the detection of the UV-induced autofluorescence of

proteins (Roegener et al. 2003). Unfortunately, it is still not

available for routine analysis, although it generates prom-

ising results.

Ideally, a dye should bind noncovalently to the protein

after a linear response curve. It should allow for a detection

of very low protein amounts because protein concentrations

in biological systems may vary by six or more orders of

magnitude (Corthals et al. 2000). At the same time,

saturation effects have to be avoided because they impede

normalized quantitation. In practice, depending on the stain

that was used, a 2-D gel image analysis may give

quantitative or only qualitative results for most or only a

subfraction of the most intense spots. Common approaches

for the detection of protein amounts use dyes that ideally

bind to proteins much stronger than to the gel matrix or

other compounds accompanying the 2-D electrophoresis

process.

Most fluorescent dyes are more sensitive than quantita-

tive visible stains (Table 2). Like most absorbing dyes,

fluorescent stains give a measure of the accumulated

amount of proteins within the sample. There are rutheni-

um-based dyes (ASCQ_Ru) available that covalently bind

to the already separated proteins (Tokarski et al. 2006).

They also give a measure of the amount of protein, and they

can be used like noncovalently binding fluorescent dyes,

but after 2-D separation.

The most striking advantage of applying covalently

binding dyes before separation is the possibility to run

multiple samples in one gel. Provided that the dyes induce

the same positional shift in a protein’s position, samples

separated in parallel will give exactly congruent 2-D

patterns. As long as the number of samples equals the

number of available dyes, 2-D patterns with perfect

positional identity can be generated. Difference gel electro-

phoresis (DIGE) was the first approach that used such a

sample multiplexing in Unlü et al. (1998) by simultaneous-

ly separating samples labeled with Cy2, Cy3, and Cy5

within the same gel. If the amount of samples exceeds the

number of available dyes (3 dyes=max 3 samples per gel),

more than one gel have to be used, giving rise to positional

variation between gels just like in the traditional setups.

Dye multiplexing allows for a quantitative normalization

over several gels by using an internal standard, i.e., a

mixture of equal aliquots of every sample under analysis

(Alban et al. 2003). The internal standard is separated

Fig. 3 Protein labeling, staining, and tagging techniques for the selective detection of proteins. By multiplexing detection approaches, image

analysis may relate different subsets of the proteome such as phosphorylated or glycosylated proteins

Table 2 The most commonly used dyes in 2-D gels

Dye Principle Sensitivity Quantitation Amount/signal

Coomassie Brilliant Blue Absorption Very low After calibration Nonlinear

Colloidal Coomassie Blue Absorption (very) high After calibration Nonlinear

Silver Staining Absorption Very high Impossible Logistic

Sypro Ruby Fluorescence High Yes Linear

Ruthenium II tris (bathophenanthroline disulfonate) Fluorescence High Yes Linear

Flamingo Fluorescence High Yes Linear

Lava Purple Fluorescence High Yes Linear

Krypton Fluorescence Very high Yes Linear
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together with Cy3/Cy5-labeled sample pairs on every gel

and serves as quantitative reference.

Protein stainings give a measurement of the current

protein amount. They are well suited for knock out

experiments or analyses of long-term experiments in which

treatment or stimulus effects have time to manifest

themselves as observable changes in protein levels. Stain-

ing techniques that measure the accumulated quantity of

proteins can overlook minor changes in protein quantities

because they disappear within noise or systematic errors.

CVs between 25 and 45% for the same spot/same sample

separated on different gels were reported by different

authors (e.g., Nishihara and Champion 2002; Eravci et al.

2007). This means that a 1.3-fold change of a protein

species cannot be reliably detected. That is why for short-

term stimulus response experiments, in vivo labeling

techniques can give a more detailed picture of a changing

proteome.

Characterizing specific protein properties

There is a broad range of techniques available that are able

to detect specific protein features (Fig. 3), such as

phosphorylation. The general approach is to combine a

conventional staining method that displays all separated

proteins with a specialized stain that highlights protein

features, giving separate images that can be recombined

using software. The Diamond ProQ (Steinberg et al. 2003)

and Emerald ProQ (Patton and Beechem 2002) stains bind

specifically but noncovalently to phosphorylated and

glycosylated proteins, respectively. Multiplexing the phos-

phoprotein or glycoprotein pattern with the total protein

clearly indicates the modified protein species. For a

quantitative analysis of phosphoproteins in a bacterial

system, see Eymann et al. (2007). For the redox state

detection of proteins, two assays for oxidized thiols based

on a radiolabeled tag (Leichert and Jakob 2004) or a

fluorescent tag (Hochgräfe et al. 2005) have been suggested.

In addition to visualizing the protein’s thiol state, image

multiplexing allows the calculation of the degree of oxidation.

An assay for the detection of carbonyl groups which are an

indicator for irreversible protein oxidation has been success-

fully applied by Dukan and Nyström (1999) or Mosterz and

Hecker (2003). This approach uses immunodetection of 2,4-

dinitrophenylhydrazone derivated carbonyl groups.

Protein synthesis at a given point in time can be detected

by using in vivo labeling with radioisotopes. Radiolabeling

is perfectly suitable for the detection of changes in protein

synthesis during stimulus response studies. Especially 35S

radioactively labeled amino acids like methionine or

cysteine or 14C-labeled compounds are applicable. After

2-D separation, the incorporated material is analyzed by

phosphorimaging (Amemiya and Miyahara 1988; Johnston

et al. 1990). This delivers data with a linear correlation

between radioactivity and measured signal over nearly five

orders of magnitude. The striking advantage of radio-

labeling in stimulus/response experiments is the ability to

detect fast but relatively small changes in protein quantities

(Bernhardt et al. 1999; Fig. 4).

The spot patterns may be very different when only

special protein subsets are imaged, so they are hard to

compare. Fortunately, the combination of autoradiography

with total protein staining can help to solve this problem.

Autoradiograph and densito-/fluorograph from the same gel

can be aligned very easily (Fig. 4) because, normally, only

minor gel distortions can occur due to staining and washing

steps. Images with the total protein amount may then help

in finding correspondences between gels because total

protein patterns change only to a small extent, so they can

be easily aligned.

Protein degradation has been measured by using in vivo

pulse chase radiolabeling as well (Kock et al. 2004). The

degradation of a radiolabeled subfraction of cellular

proteins is observed in a time course experiment by using

a series of 2-D gels and looking for proteins whose signals

disappear with time.

Radiophosphate 32/33P labeling can be used for in vivo

detection of short-time effects in protein phosphorylation in

the cell. Eymann et al. 2007 suggested to support the

analysis with a Diamond ProQ (Invitrogen) stained pattern.

The Diamond ProQ stain binds highly specific to phosphor-

Fig. 4 Protein amount (green) and protein synthesis (red) in a heat

shock experiment of Bacillus subtilis 168. The synthesis patterns can

differ dramatically between different stimuli but can be easily related

using the protein amount patterns
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ylated proteins but also to a lower extent to nonphosphory-

lated ones. This allows for the determination of landmarks

between stained and radiophosphate-labeled protein patterns

that can be used to superimpose 33P-labeled and stained

protein patterns (Fig. 5).

2-D Western blots are used for the detection of immuno-

genic proteins as suggested by Haas et al. 2002. Western blots

are also suitable for finding modified forms of known

proteins (using protein-specific antibodies) or for the

detection of protein features (phosphoaminoacid antibodies).

Again, superimposing the stained gel and the Western blot

can highlight the relevant spots. For a more detailed

overview on protein detection techniques, see Patton (2002).

Recording and preparation of raw image data

Digital images of 2-D gels are acquired using scanners or

CCD-camera-based systems. Scanners produce an image by

moving a light source and sensor element with CCDs over

the 2-D gel. The resolution of the final image is defined by

the density of sensors within the CCD element, the speed,

and the frequency of the measurements. In CCD-camera-

based systems, the 2-D gel is projected onto a CCD sensor

array through a photographic lens so the 2-D gel is measured

as a whole. Because the photographic lens is an optical system

based on refraction, removal of distortions is part of the

system’s image preparation. Techniques compensating for

lightfield variations are often applied because the central CCD

sensors collect more light than those at the borders. The

number of single CCD elements on the camera chip

determines the resolution of the final gel image. Hybrid

systems aim to combine the speed of a camera with the

resolution of a scanner bymoving a camera over the 2-D gel to

produce image tiles that are later assembled using image

processing. The challenge is to accurately remove illumina-

tion differences and distortions caused by the photographic

lens to avoid discontinuities in adjacent tiles. Some scanners

have the ability to measure white light, fluorescence, and

radiation within one device, as well as simultaneous scanning

for different wavelengths. Scanners usually provide higher

resolution than CCD cameras while consuming more process-

ing time per image. For technical information, consult Miura

(2003) and Tan et al. (2007).

The general rule in 2-D gel image analysis is that the

quality of the raw data has a significant impact on the final

result. Therefore, it is essential to avoid experimentally

caused artifacts and to configure the scanning devices in the

best possible way. Background, artifacts, and noise influ-

ence the spot detection and quantitation process. Gel

disruptions may truncate spots, speckles may mislead the

spot detection or distort quantitation, noise can cover low

intensity spots, background increases quantity and reduces

dynamic range, etc. Background may be caused by

insufficiently erased imaging plates (phosphorimaging),

insufficient destaining, fluorescing glass plates, gel cover-

ings, and backings. Furthermore, misusing optical filters for

fluorescence imaging may cause background. Noise can be

produced by high photo-multiplier tube voltages, which leads

to the amplification of random signals. Phosphor screens that

have not been used for a longer time accumulate noise.

Many software packages allow for postscan image

manipulations. One has to distinguish between image

manipulations that do not change the quantitative informa-

tion and those that do, incurring some loss of data in the

process. All operations that leave pixels intact do not

change the measured data, e.g., rotations in 90° steps,

mirrorings, and cropping (removing areas from the images

that do not contain information of interest). Linear enhance-

ments of resolution and gray levels can be undone without

data loss and do not influence quantitative data because

normalization is used in spot quantitation. On the other

hand, many operations that are used for image enhancement

cause minor changes in spot detection and spot quantitation

and should be avoided if possible, e.g., free rotations or free

scaling change gray level distribution of the manipulated

image.

Image warping leads to changed quantitative data, so

quantitation should be done on the original images, or the

warping should incorporate a factor for volume compensa-

Fig. 5 Flamingo-stained protein amount (green), Diamond ProQ

Phosphoprotein staining (red), and 33P in vivo phosphoprotein

labeling (blue) in an exponentially growing B. subtilis 168 sample.

While the green and blue subimages seem to be almost complemen-

tary, the red subimage highlights spots from the protein level pattern

as well as from the phosphate autoradiograph, so it can be used to find

correspondences
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tion (Dowsey et al. 2006) to minimize quantitative side

effects. Several types of image filtering algorithms are used

by 2-D gel image analysis software to remove background

and noise (Fig. 6). These filters are applied within the

software for correct quantitation and for optimizing the

appearance of the image on the computer screen.

Finally, there are operations that should definitely be

avoided because they result in data loss: for example,

gamma correction changes the gray levels nonlinearly,

blurring, and converting to JPEG format loose data, etc.

Another hazard lies in the application of general purpose

image manipulation software to special purpose file

formats. In the process of, for example, cropping a gel file

in Photoshop, essential calibration information can be lost

in the resulting file. Therefore, it is advisable to use

specialized software (e.g., the software that came with the

scanner, or a 2-D gel image analysis program) that under-

stands the characteristics of the file format.

Removing variations in spot positions—warping

Unfortunately, the position of a protein on a 2-D gel

fluctuates from separation to separation. Even a very

experienced experimenter will not be able to produce

“perfect” gels whose spot patterns show exact congruency

(Fig. 7a). Reasons for changing spot positions may be

variations in the pH value of the running buffer, problems

of incomplete polymerization of the gel matrix, current

leakage (Gustafsson et al. 2002), air bubbles in the gel, or

highly abundant proteins that may influence the pH

gradient in the IPG gel by their own locally concentrated

buffer capacity. Some of these problems can be mitigated

by using the DIGE setup or similar techniques (see below)

that let multiple samples comigrate on the same gel.

However, differing spot positions will still occur in any

nontrivial experiment that includes more than one gel.

Differences in spot positions are a major challenge in image

processing because they impede accurate spot matching and

thus the construction of expression profiles.

It turns out that variations in spot positions are localized,

i.e., spots that are close together on the gels will have

similar gel-to-gel variations in their position (Fig. 7b). This

suggests the possibility of eliminating the positional

variations by applying an image processing technique

called warping. In a more general context, the image

processing task is known as image registration; it is, for

example, used to combine satellite images from the same

region that were taken at different times and angles. In a

sense, image registration compensates for variations in the

lab process that could not be controlled otherwise. During

image registration, similar regions or corresponding spots

are searched on both gels in a more or less automated way.

Fig. 7 2-D gel image registration by warping. Two images are

combined pixel by pixel using a false color display (a). Vectors

connecting corresponding points (spots) on both images are deter-

mined automatically (b). Transforming the image geometry (warping)

according to the vectors produces an exact overlay (c). Corresponding

spots (black color) as well as differences in spot patterns can be easily

identified. Data about differences in spot position are used in later

image analysis steps (image fusion, transfer of consensus spot pattern)

Fig. 6 Decomposition of the raw image into background, noise, and

cleaned images. Image filters can be used to determine background

and noise, leaving the quantitative protein spot information in the

cleaned image. a Raw image, b speckles and noise, c background, d

cleaned image
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This results in pairs of landmark coordinates that link

corresponding regions of an image pair to each other. The

actual transformation of one image to fit another is not

linear (i.e., no simple rotation or scaling suffices), and it can

vary considerably between regions. It is important to note

that automatic image registration uses the entire available

image information and can be done independently of spot

detection. Artifacts like gel disruptions, finger prints, and

speckles may disturb the finding of the correct warp

transform and should be experimentally avoided or

removed by the analysis software. Image registration

techniques have been introduced by Compugen’s Z3 and

DECODON’s Delta2D in 2000 and are meanwhile adopted

by other software packages. For surveys of image registra-

tion as applied to 2-D gels, see Aittokallio et al. (2005) and

Dowsey et al. (2003).

Once suitable warpings between gel pairs have been

produced and checked using, e.g., dual channel images

(Fig. 7b,c), they can be combined to allow for the

registration of every gel in the experiment to every other

gel. By knowing the necessary transforms between the

images, the software can essentially remove all differences

in spot positions as needed for, e.g., precise spot matching

or fusion images (see below). In rare cases, no suitable

warp transform can be found, e.g., if spots switched their

relative positions or if the patterns are so different that no

obvious landmark pairs can be found (e.g., stimulus/in vivo

labeling experiments, dye multiplex experiments). Under

these circumstances, alternative experimental setups should

be used. One example is the linking of gel images via

comigration of differently labeled samples in the same gel

(DIGE) or by using helper gels containing mixtures of two

samples A and B to find an implicit warp transform between

two gel images via a helper image (Eymann et al. 2007).

Spot detection and quantitation

The goals of this step are to find the spot positions, find

their surrounding boundary, and determine their quantities.

There are two basic approaches that are used in current

software: image segmentation and model-based quantita-

tion. The segmentation approach partitions the image into

nonoverlapping segments, essentially classifying each pixel

as belonging to a certain spot, or as being part of the

background between spots. Spot boundaries and quantities

are then derived from the spot’s pixels. The segmentation of

the image can take various characteristics of the image into

account: raw intensity, slope, and classification of pixels in

the surrounding region. The advantage of this approach is

that the image is clearly separated into spots and “nonspot”

areas which are easy to assess by a user. If the software

allows editing of spot boundaries, then any desired spot

shape can, in principle, be obtained. Model-based

approaches try to model a spot’s intensity as a Gaussian

normal distribution or some variant thereof. A spot’s

quantity and boundaries are then derived from the model

(Fig. 8). The use of a Gaussian is motivated by the “3-D

shape” of spots (Fig. 8) and by general considerations on

diffusion processes in the gel. Model-based approaches

limit the range of possible spot shapes, thus leading to more

“natural” outlines. On the other hand, irregular spot shapes

are poorly represented by simple models. Spot models can

be used in the subsequent quantitation, with overlapping

spots being represented as the sum of multiple single-spot

models. Delta2D offers a hybrid between segmentation and

modeling: starting with segmentation, spots are modeled as

Gaussians, and their nonoverlapping boundaries are derived

from the models (Fig. 9).

The particulars of the methods used for spot detection

are often proprietary information of the software vendors,

and thus not publicly available. For a survey of published

work, see Dowsey et al. (2003).

The spot detection process can be controlled by setting

software-specific parameters, such as expected size of a

spot in pixels, or even expected number of spots. Due to

ambiguities in the gel images (merged spots, weak spots,

noise), automated spot detection can only be a heuristic

process in some areas. The user will, therefore, sometimes

want to change the spot pattern by removing spots, splitting

Fig. 8 Spot boundaries for high (a) and low abundance (b) spots

Fig. 9 Spot boundaries produced by segmentation (a) and subsequent

modeling (b)
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spot clusters, or joining spots. Manual intervention has a

downside as well: Individual users have different percep-

tions about the “correct” spot shapes, so reproducibility

between different operators of the software suffers. It is,

therefore, advisable to reduce the necessary manual

interventions to a minimum, e.g., by defining points as

“markers” for the creation of new/splitting of existing spots

and letting the software determine the adapted boundaries.

In the simplest case, one assumes that gray values found

in the image file are directly proportional to image

intensities and, by extension, protein quantity in the small

gel area corresponding to the pixel. However, more

advanced imaging equipment utilizes calibration informa-

tion that should be used to arrive at correct quantities:

Calibration inherent in the file format (Fig. 10). Some

imaging devices can measure more intensity values than

what fit into the available image file formats. For example,

if the imaging device can measure a range of 120,000

intensity values, this range cannot be stored into a 16-bit

TIFF image because the file format only provides 65,536

possible gray levels per pixel. One way to deal with this is

to transform the measured intensity values linearly into the

range of gray levels in the image file. Alternatively,

because, for lower signal intensities, higher accuracy is

desirable, a nonlinear function (e.g., square root transform

as illustrated in Fig. 10) is applied by some imaging

devices. This provides a more precise representation of

lower-intensity pixels at the price of lower accuracy for

high intensities. The corresponding vendor-specific file

formats, e.g., Fuji’s IMG/INF format (Fujifilm, Düsseldorf,

Germany) and the GEL format used in devices by

Molecular Dynamics (Sunnyvale, CA, USA) and GE

Healthcare (Munich, Germany), have to be interpreted

accordingly by the analysis software.

Calibration of the device. Another type of calibration

may have to be applied to eliminate variance between

imaging devices of the same model. While most of the laser

scanners in the market have a built-in autocalibration, many

flatbed scanners need to be calibrated manually. This can be

done by using calibration wedges which are offered by

several resellers, e.g., Stouffer Industries (Mishawaka, IN,

USA), Danes-Picta (Praha, Czech Republic), UVP (Upland,

CA, USA). Secondary calibration can be applied if the user

knows about the relationship of protein amount and

measured signal.

Finally, one can take into account the dye-specific

response curve for protein staining. Protein concentration

wedges may help to find a fluorescent or absorptive stain-

specific transfer function that may help to derive the protein

amount from the emitted light or the measured absorption,

respectively. It is to be expected that even different protein

species have different response curves resulting from their

biochemical properties.

Image background is generated by material that is

stained but not part of a protein spot. The method of

background subtraction can have a significant influence on

spot quantities; therefore, it is important that background

quantities are made explicit by the software instead of being

silently subtracted from a spot’s quantity. Background

levels can vary considerably between regions on a gel and

between gels. Some background subtraction methods are

based on the gray levels at the spot boundaries, other

approaches are based on the entire available image data.

One example for a background estimation that is based on

the spot boundary is DeCyder’s (GE Healthcare) rule:

Background is determined by the tenth percentile value of

all intensity values on the boundary. A background model

based on local minima was used by Tyson et al. (1986). The

Melanie II software (Appel et al. 1997) calculated back-

ground based on a polynomial that is fitted to image

intensities. A related approach is the rolling ball method

(Skolnick 1986) that determines background levels by

fitting a sphere into the 3-D “landscape” of the image (see

Fig. 11). The sphere needs to be large enough such that the

ball will not go too deep into the spots. Background levels

are then determined relative to the center of the ball when it

touches the image surface.

Normalization of spot quantities

Normalization procedures aim to mitigate systematic differ-

ences between images. Such variation can occur in protein

loading, imaging exposure times, and dye/staining efficien-

Fig. 10 Example of a gray level calibration curve that is used in

special image file formats. Gray levels found in the image file have to

be interpreted according to the curve before being summed up for

quantitation. The curve has lower slope in the low intensity range

resulting in better quantitative resolution for weak signals
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cy. Normalization starts with raw spot volumes and relates

them to spot volumes on the same or on other gels. The

simplest common procedure is to normalize for total

volumes. The corresponding normalization rule is to set

the total spot quantity to 100% on each gel image. For

every spot, its proportion of total quantity is then computed.

This rule results from the assumption that there is the same

total protein amount on all gels. With this procedure, errors

such as different protein loads, differences in staining times,

scanner exposure time, or detector sensitivity can be

compensated. For some instances, the total spot intensity

is distorted by one or a few very strong spots leading to a

skewing in the scatter plot (Fig. 12a). A countermeasure is

to exclude some of the strongest spots (e.g., the 10%

strongest spots) from the calculation of total spot intensity,

i.e., removal of outliers.

A more general approach is to postulate that the spot

intensity distributions (or some of the distribution’s

parameters) are equal between gels/gel images. Therefore,

e.g., DeCyder (GE Healthcare 2007) tries to match the

distributions by adapting parameters of a normal distribu-

tion. Another approach is to use only a subset for

normalization, e.g., by declaring that certain spots belong

to “housekeeping” genes. It is hard to justify a subset like

this, given that their being unaffected by the phenomenon

under study is just a hypothesis. In principle, one could

also spike the gel with a defined mixture of proteins with

known quantities. We are, however, not aware of any

published work that used this approach. More advanced

normalization methods that were originally developed for

the analysis of microarray data have been successfully

applied in the context of 2-D gel analysis (Fodor et al.

2005). Spatial bias, i.e., a systematic increase or decrease

in spot intensities in a gel region, can be observed in

experiments and could be corrected by incorporating it in

an error model analogous to those used in microarray

analysis (Kreil et al. 2004).

The implicit assumption in all normalization procedures

is that the majority of proteins are not affected by the

phenomenon under study, or the technical variations in the

process. Therefore, the global intensity distributions should

be equal. The similarity of two distributions can be assessed

using a quantile–quantile (QQ) plot (Fig. 12b). It is a two-

dimensional plot where spots are compared based on their

Fig. 12 Scatter plot (a) of logarithmic spot quantities on two gels

from different samples. Spots were normalized based on total spot

quantity. b The quantile–quantile plot (QQ plot) of the same data.

Spots are sorted by quantity separately on each gel; spots of

corresponding ranks are plotted. The QQ plot makes it easier to

compare the spot volume distributions; in an ideal experiment, all

points would lie on the diagonal line. The diagram shows that the

quantity distributions on both gels are nearly equal, indicating a

successful normalization

Fig. 11 Background subtraction

using the rolling ball approach
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rank, i.e., the strongest spot on one image is plotted against

the strongest spot on another image, etc. For identical

distributions, the QQ plot is a diagonal line. Systematic

deviations like an overall higher intensity are easily visible.

Normalization procedures that take into account only

intensities on one image might be called “vertical” (using

columns in an imagined spot intensity table); they modify

values based on values in the same column (i.e., image). A

different class of normalizations uses intensities from other

gels/images; these might be called “horizontal” normal-

izations. The most prominent example is the DIGE setup

using a common internal standard on all gels, usually in the

Cy2 channel (Alban et al. 2003). The internal standard is

composed by mixing all samples from the experiment in

equal amounts. Spot intensities are then normalized by

dividing them by the intensity of the corresponding spot on

the standard image (Cy2 channel on the same gel). In

addition to the gel-to-gel variations, these normalization

methods have to cope with differing backgrounds and

differing distributions of spot quantities between dyes. The

resulting statistics are very similar to the relative expression

levels that are produced in competitive hybridization

microarray experiments. For a critique of the then-current

DIGE normalization used in DeCyder and an alternative

normalization method, see Karp et al. (2004).

As a result of the spot detection and quantitation step,

the user gets a variety of data on each gel spot, including

normalized spot quantity, background, spot outline, position

of the spot center, and spot quality measures.

Of course, it would be desirable to relate spot intensities

that are obtained from 2-D gel image analysis directly to

protein molecule counts in the original sample. However,

the relation between original protein quantity in the sample

and measured spot intensity is influenced by various

intervening factors:

1. loss of sample during entry into the IEF gel,

2. efficiency of transfer from first to second dimension,

3. protein loss during staining,

4. staining efficiency,

5. a protein’s staining curve over time,

6. staining curve over concentration, and

7. dye bleaching.

Given the biochemical diversity of protein molecules, it

is to be expected that there are some proteins with a

nonlinear relation between concentration and intensity. As

a result, one expects to obtain only quantitative results of a

relative nature, referring to the same protein species, similar

to “this protein is two times stronger in sample A than in

sample B.” It is essential to track the protein across gels for

this relative quantitation to work. Although the limiting

factors mentioned above may seem a bit discouraging,

recent controlled experiments (Eravci et al. 2007) show that

even a 25% change in quantity can be reliably detected for

a substantial fraction of the proteins provided that one

controls experimental variation and software-related prob-

lems that have a diminishing effect on reproducibility

(mainly spot matching, see below).

Building expression profiles

For comparing the spot intensities over a whole experiment,

each spot on a certain gel has to be mapped to the

corresponding spots on the other gels in a process called

spot matching. The quality of the matching depends on the

quality and the reproducibility of electrophoretic separation

and spot detection as well as on the methods employed by

the software. In the ideal analysis, spot matching would

produce exactly one expression profile for every protein

species that is visible on any gel.

The challenges in spot matching lie in the differences in

migration positions between gels, changes in the spot

pattern itself (i.e., proteins that are missing or very weak

in one of the samples), ambiguities in the gel data (e.g.,

more or less well-resolved spot clusters). Due to these

difficulties, spot matching has been, alongside with spot

editing, the most time-consuming step in the analysis when

using traditional software. The traditional approach consists

of doing separate spot detections for each individual gel

image of the experiment. This results in differing spot

patterns, even for replicate samples. In a subsequent step,

the user has to revise these results and, if necessary, to

correct missing or false positive spots. Furthermore, regions

that were detected as separate spots on one gel but as a

single spot on another have to be split or joined by hand.

Unfortunately, these problems grow with the number of

gels (Voss and Haberl 2000), severely limiting the statistical

benefits that come with larger sample numbers. For

example, in a study that used plasma from five different

individuals, taken at six time points (Fodor et al. 2005),

there were fewer than 150 spots matched across at least 40

of the total 45 DIGE gels, out of 2,385 spots total.

Although it seems possible with enough manual work to

improve expression profiles, both the inherent ambiguity in

the images and the sheer amount of work necessary result

in the acceptance of mismatches and gaps in expression

profiles with classical packages. Spot-matching-related

problems affect the statistical analysis: Gaps in expression

profiles have to be treated as missing values. Mismatches

are the equivalent of substituting a random value into the

expression profile. Both effects decrease the statistical

confidence substantially.

To overcome these problems, a different approach to

construct expression profiles has been suggested and

implemented in recent years. The approach is based on a
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spot consensus pattern that is derived from all gel images of

an experiment and then applied to each gel image of the

analysis set (Figs. 1 and 2). The consensus pattern is

produced by spot detection on a fused image that

essentially contains all spots in the experiments (“union

fusion,” Luhn et al. 2003). Image fusion is a method to

combine multiple images into a new, synthetic image where

each pixel is a function of corresponding pixels in the input

images. The resulting image looks like a real gel image,

and, more importantly, all spots from the experiment are

represented on it. Thus, spots that are present only on a few

of the gels can be located in the fused image, and properly

separated from those surrounding them. When the detection

and editing of the consensus spot pattern is finished, spot

boundaries are transferred back to the original images. This

transfer uses the transformations that were produced from

the warping step and used earlier to create the fused image.

The spot sizes and intensities differ from gel to gel, so a

spot remodeling step is applied to make the spot boundaries

fit to the gray level distributions of the original gel images.

The spot quantities are then calculated as usual by summing

the pixel intensities within the spot boundaries. Because

each gel has the same spot pattern (modified by the warping

transform) a matching of the spots is quite easy and results

in 100% spot matching and complete expression profiles.

For spots that are absent on some gels, the method will

nevertheless produce a spot quantity which will be near

zero after background is subtracted. In essence, one could

describe the spot transfer approach as quantitation of

corresponding gel image regions. The resulting expression

profiles were shown to be superior to those produced by the

classical method (separate spot detections on each gel) both

in terms of quality as well as time needed for the analysis

(Eravci et al. 2007).

Analyzing gene expression

Having expression profiles at hand, we can now proceed to

address the important biological questions of the phenom-

enon under study. Overall, the task is to distinguish those

proteins that are relevant or interesting from those that are

relatively unchanged. It is often the case that 2-D gel

studies are exploratory in nature, i.e., that one wants to

generate hypotheses and find proteins whose role can later

be validated using other methods. An example of this is the

discovery of protein biomarkers where one searches

proteins that are consistently associated with a phenotype.

Another group of applications is concerned with elucidating

and interpreting subsets of proteins that are involved in a

biological process, e.g., coregulated proteins induced by an

external stimulus (Bernhardt et al. 2003). Methods ranging

from the classical statistical tests to machine learning are

applied to address these questions.

As in all experimental work, the design of the experi-

ment is of crucial importance to its success. It is expedient

to ask for statistical advice early to be able to make optimal

use of resources and limited amounts of sample material.

For all but the most exploratory experiments, one will want

to use replicates: biological replicates to address genetic

and environmental variability and maybe technical repli-

cates (i.e., multiple separations of the same sample) to

address the variability in the gel electrophoresis process

itself. General guidelines concerning the use of replicates

and statistical analyses accompanying published data have

been put forward in Wilkins et al. (2006). Of course, a

higher number of replicates increase the number of proteins

that can be identified as being relevant with statistical

confidence. A recommendation for the simplest possible

case (two sample groups) is worked out in Hunt et al.

(2005). Karp and Lilley (2005) present a power and cost-

benefit analysis for DIGE experiments and DeCyder

software that can be used as a model for other experimental

setups. The type of replicate affects the statistical model

that should be used: When applying statistical tests,

technical replicates cannot necessarily be viewed as

independent observations, so a more refined statistical

analysis, e.g., nested analysis of variance (ANOVA), can

give better results (Karp et al. 2005). Pooling of samples

should be kept to a minimum because it diminishes (or

prevents) the ability to assess biological variation within a

sample type. In Molloy et al. (2003), the effects of technical

and biological variance are investigated for samples of

different types (bacteria, cell lines, primary cultures, human

samples). For guidance on experiment design, see also Hunt

et al. (2005). Of course, experimental variability is different

between laboratories, and the software and analysis method

used can have a crucial influence on the outcome’s quality.

The studies cited here use separate spot detections on each

gel and often bias results by selecting only spots that were

matched across a sufficient number of gel images.

At the level of expression profiles, 2-D gel analysis is

very similar to the analysis of DNA microarrays, so a lot of

the methods applied there can be used with minor

adaptations. In fact, some of the work on machine learning

on 2-D gel data predates the microarray technology (e.g.,

Appel et al. 1988). Let us highlight the main differences

between 2-D gel data and microarray data before we

proceed to describe the methods in detail:

1. Running differences between gels add a source of

errors for spot matching, whereas in microarray data,

matching is trivial because every gene is spotted at a

known row and column.
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2. Spot detection in 2-D gels is much harder because spots

may not be distinct.

3. Gene information is not readily available for spots, so it

is harder to correlate or cross-validate expression

profiles with gene annotations.

The first two characteristics have the greatest impact on

the quality of statistical analysis. Running differences and

spot shape ambiguities (e.g., distinct spots on one gel vs

overlapping spots on another) create spot matching problems

that can lead to faulty assembly of expression profiles and

gaps (missing values). By using consensus spot patterns (see

above) that are transferred onto all images, one obtains

consistent expression profiles. Of course, the ambiguities

inherent in electrophoresis, e.g., masking of weak spots by

strong ones in a nearby position (Pietrogrande et al. 2002;

Campostrini et al. 2005), as well as operator-related variance,

are still potential sources of errors and variation.

Currently, all 2-D gel analysis software packages come

with some basic internal statistical analysis facilities. The

advantage of using these facilities as opposed to external

programs is that the analysis of expression profiles is tightly

integrated with image analysis. For example, it is easy to

see a section of all gels around a given spot that was

flagged as being differentially expressed. All packages

support the export of expression data in tabular form so

more advanced methods can be used. Beyond the image

analysis packages, there are a few commercial and

noncommercial options for the statistical analysis of 2-D

gel data. Genedata’s Expressionist (GeneData, Basel) and

DeCyder EDA (GE Healthcare) are products that offer

multivariate statistics tailored for 2-D gel image data.

General-purpose statistics packages like the free and open-

source R (www.r-project.org) have extensive facilities for

higher-level methods such as principal component analysis

(PCA) and clustering. The R-based BioConductor package

(www.bioconductor.org) provides access to a wide variety

of data analysis methods and graphics facilities that were

developed for microarray data. While these command-line-

oriented packages offer great flexibility and control as well

as some of the latest methods in the field, their learning

curve can be steep. A more interactive and visual approach

to data analysis is offered by the open-source TIGR

Multiple Experiment Viewer MeV (Saeed et al. 2003;

http://www.tigr.org/software/tm4/mev.html). MeV com-

bines interactive visualization of microarray data with a

wide choice of analysis methods such as hierarchical

clustering, self-organizing maps, and PCA (Fig. 13).

Hypothesis-driven methods

In the simplest case, the experiment is a comparison of two

samples A and B (e.g., treated vs control, mutant vs wild

type, etc.) The task then is finding those proteins that show

significant differences in expression levels. Normally, one

will have several replicates per sample, and a statistical test

is employed to find differentially expressed proteins.

Certainly, the most popular test in this area is Student’s t

test, where the null hypothesis is that the means of

expression levels in samples A and B are the same.

Rejecting the null hypothesis then means that the protein

under test is differentially expressed. One has to keep in

mind that the t test makes the assumption that spot

quantities within replicates follow a normal distribution

which should in principle be tested separately. Additional

tests are in use (ProteomWeaver, Bio-Rad, Hercules, CA,

USA) that do not depend on the normality assumption

(nonparametric tests) like the two-sample Wilcoxon test,

also known as the Mann–Whitney U test (Conover 2001).

In addition to statistical tests, often a fold-change criterion

is imposed on the spots. The reasoning behind this is that

even true changes in intensity are hard to verify indepen-

dently if they are small, and that, at least intuitively, a high

fold-change in a protein’s intensity is unlikely to be the

result of mere chance. For small numbers of replicates, the

fold-change criterion is sometimes the only one used.

When applying statistical tests to 2-D gel data, one is faced

with the so-called multiple hypothesis testing problem: For

each expression profile, a separate test is done. Each test has

a certain probability of giving a false positive result, i.e., a

protein spot is declared to be differentially expressed, while

the difference was due to pure chance. The large number of

tests can produce a high number of false positives. For

example, in an experiment with 2,000 spots per gel, an

accepted false-positive rate alpha of 5% will result in 100

proteins that are found to be “differentially expressed,”

although the difference is the result of mere chance. Various

procedures try to overcome this problem by adjusting alpha

in an adequate way. Bonferroni correction (Weisstein 2007a)

controls the probability that there is one single error made in

the whole analysis (family-wise error rate), i.e., that there is at

least one false-positive protein. However, this method is

usually too conservative because, in practice, it is acceptable

to have some false positives, depending on the cost of

repeating or validating the corresponding results. The

proportion of false positives in the result set is controlled by

the False Discovery Rate (FDR) approach (Benjamini and

Hochberg 1995; Pawitan et al. 2005). The false discovery rate

is the rate of false positive results among all profiles that were

tested positive. While it is difficult to estimate the false

discovery rate, the approach in Benjamini and Hochberg

(1995) gives a simple procedure to control it, i.e., make sure

the false discovery rate is below a given bound. Overall, the

FDR approach allows one to strike a balance between

the need to find statistically valid proteins of interest and

the additional cost that is associated with following up on

1236 Appl Microbiol Biotechnol (2007) 76:1223–1243



false positives. For background and applications of FDR and

related methods, the reader is advised to consult the reviews

in Manly et al. (2004) and Pounds (2006).

For more complicated experiment designs involving

multiple factors, ANOVA can be used (Weisstein 2007b;

Karp et al. 2005). The basic idea of the method is to find

out to what extent the observed variances between different

samples can be explained by the experimental parameters,

as opposed to biological or technical variation.

Hypothesis-independent methods

Hypothesis-independent methods were developed for the

discovery of patterns in large quantities of possibly high-

dimensional data, in the fields of data mining and machine

learning. As we expect a small number of fundamental

biological processes to be reflected in the expression

patterns of a large number of proteins, it makes sense to

apply these methods to the analysis of 2-D experiments.

Again, much of the work on microarray analysis can be

transferred easily because the fundamental unit of data is an

expression profile. When using separate spot detections on

every gel, the missing values will have to be dealt with by

the statistical method, for example, by missing value

imputation. A large percentage of missing values decreases

the utility of all statistical methods, that is why we

recommend using the consensus spot pattern approach

described above.

Hierarchical clustering refers to a group of methods that

aim to group expression profiles or gels by similarity,

Fig. 13 By using a consensus spot pattern in Delta2D (a), complete

expression profiles (b) are generated. Profiles can be imported into

DNA array analysis software (here: TIGR MultiExperiment Viewer,

TMEV). With appropriate data transformations and normalization,

many approaches for data analysis known from DNA arrays can be

used for 2-D-gel-based proteome data. Hierarchical clustering (c) and

self-organizing maps (d) group proteins by similarity of their

expression profiles. Template matching (e) can be used to find proteins

that conform to an expression pattern given by the user. Terrain maps

(f) can give a high level overview of a data set where correlations of

protein expression profiles are shown as distances in two dimensions,

and protein density is shown in the third dimension (height)
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forming separate clusters that can be further analyzed.

Hierarchical clustering of gels can be used to detect outliers

and to identify structures in the experiment. Ideally, the

cluster composition will reflect the structure of the

experiment, e.g., replicates and images from the same

sample should end up in the same cluster (Fig. 14).

Clustering of images is a good first step in assessing the

quality of the quantitative data. Clustering of expression

profiles is done to identify proteins with similar behavior,

implying that they are coregulated or at least correlated.

Again, it is hoped that the cluster structure maps to

functional groups or coregulated proteins. The global nature

of the cluster display allows for a broad overview and the

forming of hypotheses that can then be tested. However, in

contrast to the situation in microarray data with 2-D gels,

biological annotations of proteins are not available until

after protein identification, making it harder to correlate

expression behavior to function. The methods and software

tools applied in the microarray analysis are applicable here,

and the choices a user has to make are essentially the same

(Meunier et al. 2007). The first choice is the normalization

method, e.g., to standardize expression profiles to be of

mean zero and variance one. Then a similarity measure

between expression profiles has to be defined, e.g.,

correlation, or the Euclidean distance. Taken together with

further choices such as using single, average, or complete

linkage to connect clusters, these combine to create a

variety of possible clusterings.

Another method that has been applied with great success

in a variety of areas like semantic text analysis (Deerwester

et al. 1990) and face recognition (Turk and Pentland 1991)

is PCA or the related singular value decomposition. The

basic idea is to find a projection from a high-dimensional

space into a low-dimensional space (e.g., the plane) such

that the structure, especially the variation in the data, is

preserved. The principal components are the directions

along which the variation is maximal. They can be

interpreted as “hidden parameters” of a process or exper-

iment. The tutorial Shlens (2005) provides an accessible

introduction, the book chapter Wall et al. (2003) gives

background and motivation for microarray analysis.

As with clustering, PCA can be done for gels or

expression profiles. In the first variant, each gel image is

considered as a vector with coordinates given by the spot

intensities on that gel. For example, an experiment with 24

gels from sample A and 24 gels from sample B and 1,500

spots on each gel would be modeled as a set (or point

cloud) of 48 vectors in 1,500-dimensional space. The goal

of PCA is then to find a projection of the point cloud in

two- or three-dimensional space such that as much as

possible the variation of the point cloud is preserved. One

hopes that the gels from different samples will be in

Fig. 15 PCA of 54 gels from 11 patients. Gels are color coded

according to sample (sample a: shades of blue; sample b: shades of

red). Notice how replicate gels are grouped closely together. We have

chosen the projection onto the second and third principal components

because it shows a good separation between samples

Fig. 14 Section of a heat map of a hierarchical clustering of an

experiment consisting of 11 individuals with 5 replicate gels each, and

1 average fusion image per individual. Clustering was done for gels

(columns) and expression profiles (rows) simultaneously. Gels are

color coded by sample, replicates have the same color, sample A is

colored in shades of blue, sample B is colored in shades of red. The

clusterdendrogram for gels shows that replicates were clustered

together, and samples are roughly grouped in the higher level clusters.

The clustering did not use any sample or replicate information. The

left-most replicate group is probably an outlier, as it branches off early

in the dendrogram. Notice also the cluster structure in the rows,

grouping proteins with similar expression profiles (row dendrogram

not shown). Expression profiles were generated by spot transfer, hence

the absence of missing values. Only about 20% of all expression

profiles are shown
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separate regions of the resulting diagram (Fig. 15). The

principal components can then be interpreted as “typical

spot patterns” or “eigengels.” Their coordinates can be

analyzed to determine which spots are contributing most to

the variance, making them candidates for protein identifi-

cation and biological interpretation.

When PCA is applied to the expression profiles, in our

example, we would consider a point cloud of 1,500 vectors

(one vector for each expression profile) with 48 dimensions

(the expression levels on the 48 gels). The result is a

display of the proteins where (hopefully) proteins with

close positions are biologically related. Consider a time

series experiment, where proteins are switched on and off in

stages. If there is a “hidden parameter,” such as a stage in

the cell cycle, it will have a systematic influence on the

expression levels, and thus increase the variance for the

genes taking part in it. This increased variance will then

become part of the directions that are used for the

projection (the principal components). The principal com-

ponents were also called “eigengenes,” they can be seen as

“typical expression profiles,” see, for example, Alter et al.

(2000) and Holter et al. (2000).

Presentation and visualization: from spots to proteome

maps

For the presentation of an analysis, as well as throughout

the whole process, going back to original images is often

useful. Showing whole images or sections thereof in

combination with the processed spot data (Fig. 16) is

therefore a feature offered by all analysis packages. Let us

start with the display of a single gel image. The gray level

resolution of current imaging devices (usually 16 bit for

65,536 different values) is much higher than what a

computer screen can display. Therefore, the 2-D gel images

have to be adapted or enhanced by histogram manipulations

that cause a certain loss of information.

The next more complex display is for comparison of a

pair of gel images, e.g., treated vs untreated or wild type vs

knockout. There are two possibilities: The gels can be

shown side by side, or the gels are shown superimposed in

a dual channel image (see Fig. 5). For both types, a

histogram equalization is necessary to give the user a visual

estimate of relative spot quantities. Background can be

removed before display, depending on the method that is

used for background detection. Even after equalization, the

visual impression of spot volumes can be misleading, for

example, when comparing a small dark spot with a spot that

is less intense but larger. Before gel images are super-

imposed in false colors, histograms should be equalized, and

the chosen colors should be of similar apparent intensity.

This makes sure that one image does not dominate the

others and negatively influence the estimation of quantities.

Ideally, the chosen colors are of similar luminance and

located on opposite sides of the color wheel. Triple channel

images are sometimes used (red-green-blue channels; see

Fig. 6) but difficult to interpret for the untrained eye.

Fig. 16 Gel image tiles before (a) and after (b) multiway histogram equalization. After the equalization, the difference in the highlighted spot

(middle row, left and right images) is clearly visible as shown in the expression profile (c)
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For the display of multiple gels, one often shows tiles

containing spots of interest in a side-by-side display. Here,

a multiway equalization of histograms is necessary to give

suitable visual impressions of spot intensities. Figure 16

shows the effect of multiway equalization on the display of

a series of 2-D image tiles. With proper equalization

quantity, the visual impression closely corresponds to the

normalized quantities shown in the expression profile chart

(Fig. 16c).

Presentations of large gel series, for example, for time

course experiments, or large projects containing a lot of

replicates, will require too much screen space for a side-by-

side display. Image warping can help in making an

animation of 2-D gel series from time courses by assuring

that spot positions do not jump between frames. Bernhardt

et al. (2003) used a combination of dual channel images

showing protein amount (stained proteins—false colored

green) and current protein synthesis (35S methionine

labeling—false colored red) to monitor the fate of each

protein during the development of a bacterial culture along

a time line (http://microbio1.biologie.uni-greifswald.de/

starv/movie.htm).

Especially for the collection of protein identifications

and the presentation of proteome maps, it is very useful to

condense spot pattern information from a multitude of gels

into a single reference image. This can be done by

collecting spot identifications on a single representative

gel (Eymann et al. 2004). When using image fusion with

the union or max intensity combination function, a

proteome map can be generated that shows all proteins

that were observed in the experiment. The map shows

realistically looking spot shapes and does not ignore differen-

tially expressed spots or dilute rarely occurring spots like it

would be the case with average images (Tam le et al. 2006).

A related feature was implemented in Proteomweaver

(Bio-Rad) that allows for the combination of different

narrow pI-gradients into a global proteome map. This

composite map utilizes the much better resolution of

narrow pH-gradient strips and supports image analysis as

if the data came from a single, very wide gel.

A proteome map normally serves as basis for further,

especially physiologically oriented research and is compa-

rable with a DNA array layout. The proteome map defines

at which positions a protein spot was identified and can be

recovered during gel analysis. A variety of proteome maps

of many kinds of samples is available. Most of them show

about a thousand different identified protein spots. Addi-

tional data can be attached to spots using labels, e.g.,

protein identification or functional information. Especially

in gel regions with a very dense spot pattern, it is a big

challenge to display the protein information without

obscuring image information with spot labels.

Fig. 17 Proteome maps with spot color coding. a Stress proteome

map of B. subtilis 168 (compare Tam le et al. 2006). Spots were color

coded according to their induced expression in response to different

stress factors. b Proteome map of B. subtilis 168 in a glucose

starvation time course experiment. Spots were color coded according

to the growth phase
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In proteome maps, color can be used for encoding the

association of a protein to a regulatory group (Voigt et al.

2006). In Fig. 17a, proteins above a defined induction

factor were grouped by showing them in the same color. If

several induction groups are displayed in parallel, Venn

diagrams for defining the protein set’s color are used. The

presented stress proteome map shows 15 combinations of

expression behavior in response to four analyzed stimuli. In

general, color coding of protein subsets can be applied for

any way of allocating spots to (possibly overlapping)

categories.

Color coding also works for highlighting proteins that

show elevated expression levels at certain points in a time

course experiment. Also here, the information of a time-

course-associated gel series is condensed in a proteome

map. For each time point, a color is defined in the proteome

map, which is then assigned to spots that have their

maximal expression level at that time point (Fig. 17b).

In contrast to a tabular display of spot quantities, a

proteome map retains that spatial relations between spots as

well as typical spot forms. It is, thus, easier to relate

visually to newly produced gel images. The color coding of

spots allows for easy visual identification of interesting

subsets of the proteome.

Conclusions

Advances in software, algorithms, and experimental methods

have kept 2-D gels competitive with and complementary to

other methods for proteome analysis. While still not fully

automatic, the software-based analysis is not the time-

consuming bottleneck in a proteomics experiment anymore.

With complete expression profiles, one is able to take full

advantage of statistical methods (e.g., hierarchical clustering,

PCA) that were established in the analysis of DNA micro-

array data. We see three main directions for future improve-

ments of the available software: Firstly, the basic image

processing algorithms, i.e., spot detection and image regis-

tration (warping), should be improved to a point where the

need for a human operator is limited to checking the results.

Ongoing research in automated registration and the potential

for even greater processing power with grid computing

(Dowsey et al. 2006) are promising steps towards this goal.

The proteomics community can advance the state of the art

by freely sharing raw data from a wide variety of experi-

ments, and by establishing benchmarks. Standardization

efforts of data formats and reporting requirements are being

established for the gel electrophoresis process (MIAPE GEL,

currently open for public feedback before publication at

http://www.nature.com/nbt/consult); a similar standard for

image processing and documentation of results is under

development. Both are coordinated by the HUPO Proteomics

Standards Initiative (www.psidev.info). The second direction

for improvement is defined by the further adoption of

advanced statistical methods for the analysis of large 2-D

gel experiments. It seems plausible that large numbers of

images from multiple studies could be aggregated to give

richer “functional profiles” of proteins that show expression

levels across a wider range of samples and conditions. The

third direction is putting results from 2-D gel analysis into a

larger context by combining spot data with functional

annotations and data from other experimental techniques.

Visualizing the result in biological terms (metabolic path-

ways, functional categories, etc.) will make it possible to

gain new insights from the growing amounts of data

accumulated by the “Omics” technologies.
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Request you personal demo today!Request you personal demo today!Request you personal demo today!Request you personal demo today!

Want to know more?Want to know more?Want to know more?Want to know more? Contact us today to arrange your personal 

live web demo. All you need is a web browser and a 

expert will show you how you can apply Delta2D to y

2D gel analysis needs.

You can download an evaluation version of Delta2D f

www.decodon.com. Your questions and remarks are wel

us at +49 3834 515230 or send an email to info@deco

Technical data:Technical data:Technical data:Technical data:

Supported image file formats: Supported image file formats: Supported image file formats: Supported image file formats: Delta2D supports virtually all calibrated 

and uncalibrated image file formats on the market t

including tiff (8 bit, 12 bit, 16 bit), IMG (Fuji, 

GIF, PNG, PNM. 

Supported Protein Labels and Stainings: Supported Protein Labels and Stainings: Supported Protein Labels and Stainings: Supported Protein Labels and Stainings: 

all protein labels and stainings, including Silver,

Coomassie, Sypro Ruby, Flamingo, Krypton, LavaPurpl

Emerald ProQ, Cy-Dyes, G-Dyes, radioactive labels etc.

Supported Spot Picking Devices: Supported Spot Picking Devices: Supported Spot Picking Devices: Supported Spot Picking Devices: Delta2D supports spot pickers from 

Molecular Dynamics, Genomic Solutions, Bruker, GE a

contact DECODON for details.contact DECODON for details.

Supported Operating SystemsSupported Operating SystemsSupported Operating SystemsSupported Operating Systems (*recommended): Delta2D runs on 

Windows NT / 2000 / XP / Vista* / 7* at 32 or 64* bi

(Panther) / 10.4 (Tiger) / 10.5* (Leopard) / 10.6* 

most flavours of 32 bit or 64 bit* Linux.

Hardware RequirementsHardware RequirementsHardware RequirementsHardware Requirements:

Minimum Hardware: 

Pentium III, 800 MHz, 2 GB RAM or Power Mac G4, 2 G

Recommended Hardware: 

Dual or Quad Core Processor with 2 GHz or better, 4

in combination with a 64-Bit operating system

Copyright and Copyright and Copyright and Copyright and Trademarks Trademarks Trademarks Trademarks 

All material in this brochure is Copyright © 2000

All Rights Reserved. DECODON, DECODON logo, Delta2D

trademarks or registered trademarks of DECODON GmbH

in several other countries all over the world. All 

are trademarks or registered trademarks of their re

Contact us today to arrange your personal 

live web demo. All you need is a web browser and a phone – an 

expert will show you how you can apply Delta2D to your specific 

You can download an evaluation version of Delta2D from 

www.decodon.com. Your questions and remarks are welcome, call 

us at +49 3834 515230 or send an email to info@decodon.com.

Delta2D supports virtually all calibrated 

and uncalibrated image file formats on the market today, 

including tiff (8 bit, 12 bit, 16 bit), IMG (Fuji, GE), GEL (GE), JPEG, BMP, 

Supported Protein Labels and Stainings: Supported Protein Labels and Stainings: Supported Protein Labels and Stainings: Supported Protein Labels and Stainings: Delta2D supports virtually 

all protein labels and stainings, including Silver, Coomassie, Colloidal 

Coomassie, Sypro Ruby, Flamingo, Krypton, LavaPurple, Diamond ProQ, 

Dyes, radioactive labels etc.

Delta2D supports spot pickers from 

Molecular Dynamics, Genomic Solutions, Bruker, GE and others. Please 
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(*recommended): Delta2D runs on 

Windows NT / 2000 / XP / Vista* / 7* at 32 or 64* bit, Mac OS X 10.3 

(Panther) / 10.4 (Tiger) / 10.5* (Leopard) / 10.6* (Snow Leopard) and 

Pentium III, 800 MHz, 2 GB RAM or Power Mac G4, 2 GB

Dual or Quad Core Processor with 2 GHz or better, 4 GB RAM, 

Bit operating system

All material in this brochure is Copyright © 2000-2011 DECODON GmbH. 

All Rights Reserved. DECODON, DECODON logo, Delta2D, and Protecs are 

trademarks or registered trademarks of DECODON GmbH in Germany and 

in several other countries all over the world. All other products mentioned 

are trademarks or registered trademarks of their respective companies. 


